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Bayesian estimation of Karplus parameters and torsion angles
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Abstract

We apply Bayesian inference to analyze three-bond scalar coupling constants in an objective and consistent way. The Karplus
curve and a Gaussian error law are used to model scalar coupling measurements. By applying Bayes� theorem, we obtain a prob-
ability distribution for all unknowns, i.e., the torsion angles, the Karplus parameters, and the standard deviation of the Gaussian.
We infer all these unknowns from scalar coupling data using Markov chain Monte Carlo sampling and analytically derive a prob-
ability distribution that only involves the torsion angles.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Three-bond scalar coupling constants provide useful
information on the local geometry of biomolecular
structures [1]. The Karplus curve [2] relates the interven-
ing dihedral angle u to the three-bond scalar coupling
constant:

3JðuÞ ¼ Acos2uþ B cosuþ C. ð1Þ
From a known Karplus curve, either bounds on torsion
angles are derived [3,4], or the structure is directly refined
against the measurements [5]. In both approaches the
coefficients A, B, and C need to be known [6]. Since the
Karplus coefficients are sensitive to the chemical environ-
ment of the macromolecule [7,8], use of empirically
parametrized Karplus curves may introduce systematic
errors. Therefore, the Karplus coefficients should, in
principle, be calibrated for each molecular structure sep-
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arately, for example, by estimating them from an X-ray
structure of the molecule under investigation [3]. But
then a previous structure determination must have been
carried out. Furthermore, the chemical environment may
differ for solution and crystal structure.

We use Bayesian inference to simultaneously deter-
mine protein torsion angles and the unknown Karplus
parameters directly from experimental three-bond scalar
coupling data without assuming prior knowledge of a
pre-determined structure. Bayesian probability theory
[9] provides a general framework for solving parameter
estimation problems and has already been applied in
NMR related data analysis to estimate coupling con-
stants from antiphase multiplets [10], to analyze relaxa-
tion experiments [11], and for parameter estimation
from time-domain data [12].
2. Methods and results

In a Bayesian structure determination framework
[13,14], the problem of unknown Karplus coefficients
can be treated in an elegant way. The observation of a
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scalar coupling constant of strength 3J is described
through a probability expressing the fact that, due to
experimental and processing errors as well as theoretical
shortcomings, measured and theoretically predicted sca-
lar couplings will never match exactly. The least biasing
error model assuming no systematic deviation and
knowledge of the average discrepancy r is a Gaussian
[9]:

pð3J ju;A;B;C; rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � 1

2r2
ð3J � 3JðuÞÞ2

� �
.

ð2Þ
This probability density function is conditioned on the
actual value of the torsion angle u, on the parameters
A, B, C of the Karplus curve and on the global error
r. When we observe n couplings 3J1, . . . ,

3Jn indepen-
dently, the likelihood function, i.e., the probability of
all measurements, is

Lðu;A;B;C; rÞ ¼ ð2pr2Þ�n=2 exp � 1

2r2
v2ðu;A;B;CÞ

� �

ð3Þ
with the goodness of fit

v2ðu;A;B;CÞ ¼
Xn

i¼1

ð3J i � Acos2ui � B cosui � CÞ2.

ð4Þ
Given n scalar coupling measurements only, the torsion
angles u = {ui}, the Karplus parameters A, B, C, and
the Gaussian error r are unknown, but can be estimated
from the data. The rationale is that any quantity enter-
ing the theoretical model to calculate the observable can
be reconstructed from the measurements. Obviously,
not only the torsion angles but also the Karplus coeffi-
cients determine the predicted values of scalar coupling
constants; the error quantifies how close the fit can get.
It should thus be possible to estimate these parameters
from the data. Bayes� theorem [9] formalizes this ratio-
nale: upon modulation with a prior density
p (u,A,B,C,r), the likelihood determines the unknown
parameters in terms of a posterior density

pðu;A;B;C; rÞ / Lðu;A;B;C; rÞpðu;A;B;C; rÞ. ð5Þ
From the posterior density we can not only derive the
most probable torsion angles but also the Karplus coef-
ficients A, B, C, and the unknown error r.

In case of the probabilistic models employed here, the
parameters A, B, C, and r can even be eliminated before
structure calculation. This is made possible through the
marginalization rule [9]: every uninteresting parameter
must be integrated out in the posterior density. Assum-
ing Jeffreys� prior [15], p (r) = r�1, for the unknown
scale parameter r (i.e., a flat probability density in
lnr), marginalization yields the integrated likelihood
function:
Lðu;A;B;CÞ ¼
Z

drLðu;A;B;C; rÞpðrÞ

/ ½v2ðu;A;B;CÞ��n=2. ð6Þ

Further integration over A, B, C (assuming a flat prior
density p (A,B,C)) yields an integrated likelihood func-
tion that depends only on the torsion angles u

LðuÞ¼
Z

dAdBdCLðu;A;B;CÞpðA;B;CÞ

/detðAðuÞTAðuÞÞ�1=2½jTðI�AðuÞAðuÞþÞj��ðn�3Þ=2

ð7Þ

with the n · 3 matrix

AðuÞ ¼
cos2u1 cosu1 1

..

. ..
. ..

.

cos2un cosun 1

0
BB@

1
CCA ð8Þ

and the data vector j = (3J1, . . . ,
3Jn)

T; A+ = (AT

A)�1AT is the generalized inverse [16] of A. If we assume
the torsion angles to be known, A+j minimizes
v2 (u,A,B,C) with respect to the Karplus parameters.
This solution can also be given a probabilistic interpre-
tation: A+j is the maximum likelihood estimate for the
Karplus parameters.

Any quantity apart from the torsion angles has been
eliminated via marginalization, thereby projecting the
posterior density to conformational space

pðuÞ / expf�bEðuÞgLðuÞ. ð9Þ
Here, we used a Boltzmann distribution as prior density
in torsion angle space [13] involving a potential energy E
and the reciprocal temperature b. We can use the nega-
tive logarithm of p (u) to derive the most probable tor-
sion angles.

The Karplus curve is highly degenerate, which com-
plicates parameter estimation. A reflection of all torsion
angles, ui fi 2p � ui, does not affect the calculated cou-
pling constant. The transformations ui fi p + ui and
ui fi p � ui can both be compensated by letting
B fi �B. Since we are already facing an up to fourfold
degeneracy in the Karplus curve with fixed coefficients,
this degeneracy will be duplicated due to the invariance
B fi �B if we consider the Karplus parameters as free
variables. Furthermore, if |B| is close to zero, a p/2 shift
in ui can be compensated by A fi �A, C fi A + C.
These invariances make it impossible to uniquely deter-
mine torsion angles from a single data set; only by mea-
suring data for different coupling types we can resolve
the degeneracy in the torsion angles. However, without
taking prior structural knowledge into account, there
will still remain at least a twofold degeneracy due to
the equality v2 ({ui + p},A,�B,C) = v2 ({ui},A,B,C).

If different coupling types have been measured, we
describe each data set with its own Karplus curve and
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its own error distribution. That is, data sets for m differ-
ent coupling types necessitate 3m Karplus coefficients
Aj, Bj, and Cj and m error parameters rj, and the joint
posterior distribution for all unknowns is

pðu; fAj;Bj;Cj; rjgÞ / expf�bEðuÞg

�
Ym
j¼1

Lðu;Aj;Bj;Cj; rjÞ ð10Þ

with L (u,Aj,Bj,Cj,rj) defined as in (3). Since the param-
eters for different data sets separate, marginalization is
straightforward, and the marginal posterior density for
the torsion angles only becomes

pðuÞ / expf�bEðuÞg
Ym
j¼1

LjðuÞ; ð11Þ

where each likelihood factor Lj(u) is of form (7) involv-
ing matrices A (u � dj) with dj being the phase angles of
the jth coupling type.

We analyzed 3J coupling data measured on ubiquitin
[17,18] (PDB restraint file 1d3z), comprising values for
six scalar couplings that involve the main chain torsion
angle u. We removed two outliers in the data set for the
C 0–C 0 coupling and simulated the joint posterior densities
(10) and (11). Besides the 72 ui angles, we estimated six
Karplus curves and six error parameters by posterior sim-
ulation [19] using a Gibbs sampling [20] scheme. Gibbs
sampling is a Markov chain Monte Carlo technique
Fig. 1. Posterior histograms for the Karplus coefficients A (filled black histo
couplings. Vertical lines indicate the estimates reported in PDB restraint file
which permits simulation of multidimensional probabili-
ty distributions in an iterative fashion. For one cycle,
every parameter is drawn, one after the other, from its
conditional posterior distribution, while inserting the
most recent values of the remaining parameters into the
conditioning side of that distribution. Iteration of this
rule generates a sequence of stochastic samples drawn
from the target distribution in (10). Here, the conditional
posterior density of the Karplus parameters is a three-di-
mensional Gaussian, and the inverse squared error fol-
lows a gamma distribution. Random number
generators for these distributions exist. We sampled the
torsion angles by approximating their conditional poster-
ior densities with a histogram. These histograms were ob-
tained by calculating slices in v2 (u,Aj,Bj,Cj) and lnLj(u),
respectively (setting b = 0), where only one torsion angle
is varied in steps of 3.6�. To accelerate convergence of the
calculation, we embedded the Gibbs sampler into a Rep-
lica-exchange Monte Carlo scheme as described in [21]
with only one pseudo-temperature k. Our setup compris-
es 50 copies of the Gibbs sampler, each simulating a
‘‘heated’’ target distribution, with inverse temperatures
ranging from kmin = 1.0 for the target distribution to
kmax = 0.1 for the high-temperature distribution. Provid-
ed kmax is sufficiently small, this distribution is practically
flat which ensures ergodic sampling. Stochastic exchang-
es of samples between neighboring copies allow the simu-
lation to escape local modes.
gram), B (black curve), and C (filled grey histogram) of the six scalar
1d3z (A: dashed, B: dot-dashed, C: dotted).
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Fig. 1 shows the posterior histograms of the Karplus
coefficients. The estimated coefficients scatter around
the values obtained by maximum likelihood using the
known NMR structure [18]. The posterior density of
the Karplus coefficient B is at least bimodal due to the
abovementioned reflection symmetry that pertains also
for multiple data sets. The posterior histograms can
directly be used to derive error estimates for the Karplus
coefficients; strategies relying on cross-validation, like
those employed in [22,17], are superfluous. Table 1 lists
the mean values and their precision for all Karplus
parameters. In most cases the value reported in the
PDB restraint file 1d3z is found to lie within the error
interval of the Bayesian estimate. Only the C 0–Cb cou-
plings are problematic.

The Bayesian approach allows us to estimate the
parametrizations of the Karplus curves and to simulta-
neously reconstruct the torsion angles for which scalar
couplings have been measured. Fig. 2 shows the poster-
ior histograms for three representative torsion angles.
All three angles scatter around the respective values
found in the NMR structure 1d3z. The precision of
the estimates depends on the number of scalar coupling
measurements observed for a particular angle: all six
coupling constants were measured for uLys6, two mea-
Table 1
Mean values and precision of the six Karplus curves (due to the twofold de

A (Hz)

3J (C 0–C0) 1.30 ± 0.12 (1.36)
3J (C 0–Ha) 3.84 ± 0.14 (3.72)
3J (C 0–Cb) 2.52 ± 0.33 (1.74)
3J (HN–C 0) 4.19 ± 0.30 (4.29)
3J (HN–Ha) 7.13 ± 0.34 (7.09)
3J (HN–Cb) 3.26 ± 0.23 (3.06)

The values reported in the PDB restraint file 1d3z are indicated in brackets.

Fig. 2. Posterior histograms for three representative u angles (in torsion ang
posterior density, the black lines are the posterior histograms obtained for th
1d3z are indicated by dotted lines.
surements involve uGly10, only one measurement in-
volves uGlu24; the spread of the u-histograms reflects
this fact. If we are not interested in the parametrization
of the Karplus curves, we can also use the marginalized
posterior density (11) (with b = 0), instead of the joint
posterior density, to estimate the torsion angles. A high
overlap of the posterior histograms demonstrates the
equivalence of both approaches (see Fig. 2).

Fig. 3 shows torsion angle samples generated from
the joint and from the marginal posterior density. Most
of the torsion angles of the NMR structure 1d3z are
found to lie within the sampled region or in close prox-
imity. Yet, it is difficult to determine macromolecular
structures from 3J data alone. This is due to a lack in
precision of the reconstructed torsion angles as well as
to missing information on other torsion angles. Fig. 3
once more demonstrates the equivalence of the joint
and the marginal posterior density: the torsion angle
samples obtained from both simulations are very simi-
lar. Again the degeneracy due to the reflection symmetry
in B is observed. This symmetry can be broken by taking
prior structural knowledge into account, i.e. by setting
the reciprocal temperature b in the conformational prior
density to a realistic value. The posterior densities of the
torsion angles will then be unimodal (data not shown).
generacy in B we calculated the statistics for its absolute value)

|B| (Hz) C (Hz)

0.93 ± 0.06 (0.93) 0.64 ± 0.03 (0.60)
2.19 ± 0.10 (2.18) 1.20 ± 0.11 (1.28)
0.49 ± 0.33 (0.57) 0.51 ± 0.12 (0.25)
0.99 ± 0.18 (1.01) 0.03 ± 0.05 (0.00)
1.31 ± 0.13 (1.42) 1.56 ± 0.34 (1.55)
0.87 ± 0.24 (0.74) 0.10 ± 0.08 (0.13)

le degrees). The shaded histogram stems from a simulation of the joint
e marginal posterior density. The values found in the NMR structure



Fig. 3. Torsion angle samples from a simulation of the joint posterior density (top) and of the marginal posterior density (bottom). The header shows
the amino acid types and a histogram of the number of 3J measurements per u angle (maximum is six, minimum is one). Circles indicate the values
found in the NMR structure 1d3z.
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3. Discussion

Schmidt et al. [23] proposed a ‘‘self-consistent’’
method that calculates torsion angles and Karplus
coefficients simultaneously. Their algorithm is a special
case of the Bayesian treatment. In the self-consistent
approach the residual v2 (u,A,B,C) with an additional
term that breaks the symmetry in B is minimized. This
procedure corresponds to maximum likelihood (ML)
estimation [9]. The deficiencies of ML-based analyses
are their inability to take prior knowledge into ac-
count and to fully exploit probability densities with
sampling algorithms. As a consequence, no statements
can be made about the precision of parameter esti-
mates. Another advantage of our approach over the
self-consistent method is that we estimate the un-
known errors rj during structure calculation. Thus, er-
rors are not fixed to a constant value (0.25 Hz in case
of [23]) but are optimally adapted to the quality of the
data.

The current model describes scalar coupling data as
instantaneous measurements. It has been shown that
three-bond scalar couplings are subject to motional
averaging [24]. A model assuming Gaussian torsional
fluctuations that can account for such averaging effects
has been proposed in [25]. This model adds to each un-
known torsion angle an unknown variance quantifying
the magnitude of the local motion. The self-consistent
method is able to determinate the additional variances,
and it would be straightforward to estimate the motion-
al variance in the Bayesian approach. Also, marginaliza-
tion is still possible and results in a joint posterior
defined on the torsion angles and their variances.

A Bayesian structure determination framework al-
lows an objective interpretation of scalar coupling mea-
surements. Parametrizations of Karplus curves can
either be estimated directly from the data during struc-
ture calculation or eliminated beforehand by marginali-
zation. Our method directly derives from probability
theory. It does not introduce additional heuristics and
is thus consistent and unbiased.
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